Total Synthesis of Natural and ent-Fredericamycin A

Dale L. Boger,* Ottmar Hüter, Kapiamba Mbiya, and Minsheng Zhang
Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received August 10, 1995 ${ }^{\star}$

Abstract

A total synthesis of both enantiomers of the potent antitumor-antibiotic fredericamycin A (1) is detailed based on a room temperature inverse electron demand Diels-Alder reaction of a N-sulfonyl-1-aza-1,3-butadiene for assemblage of a pyridone F ring precursor, a single-step Michael addition-intramolecular acylation for annulation of the DE ring system onto this pyridone F ring precursor, implementation of a regiospecific chromium carbene benzannulation reaction for AB ring construction, and a simple aldol closure for introduction of the spiro CD ring system. Resolution of the penultimate precursor $\mathbf{4 1}$ followed by deprotection provided natural and ent-fredericamycin A. The indistinguishable cytotoxic potency of the two enantiomers ($\mathrm{L} 1210 \mathrm{IC}_{50}, 0.03$ and $0.04 \mu \mathrm{~g} / \mathrm{mL}$, respectively) is disclosed along with that of the key partial structures $2\left(\mathrm{IC}_{50}=2 \mu \mathrm{~g} / \mathrm{mL}\right)$ and $21\left(\mathrm{IC}_{50}=7 \mu \mathrm{~g} / \mathrm{mL}\right)$ constituting the fully functionalized ABCDE and DEF ring systems of the natural product.

Fredericamycin A (1), a structurally unique and potent antitumor antibiotic isolated from Streptomyces griseus, ${ }^{1.2}$ has been the subject of extensive investigation since its unambiguous structure determination by single-crystal X-ray analysis ${ }^{3}$ after extensive spectroscopic studies failed to resolve tautomeric structures. ${ }^{4}$ Fredericamycin A exhibits potent in vitro cytotoxic activity and has been shown to possess efficacious antitumor activity in two mouse tumor models, P388 T/C $=200$ at 0.5 $\mathrm{mg} / \mathrm{kg}$ and 93% reduction of CD8F mammary tumor weight at $1.25 \mathrm{mg} / \mathrm{kg}{ }^{5}$ Studies have shown that procaryotic RNA and protein synthesis are inhibited earlier and to a greater extent than DNA synthesis and that the inhibition of protein synthesis was more pronounced than RNA synthesis under conditions where DNA synthesis was unaffected. ${ }^{5}$ Although studies on the single electron oxidation of fredericamycin A and its role in generating oxygen free radicals have been detailed in support of such a nondiscriminant mode of action, ${ }^{6}$ more recent investigations ${ }^{7}$ have disputed the results of the original studies. In addition, recent studies have demonstrated that fredericamycin A inhibits both topoisomerase I and II at biologically relevant concentrations and additional DNA processing enzymes at higher concentrations. ${ }^{8}$ This latter observation is in spite of the report that the agent may not interact directly or detectably with DNA 5 suggesting direct enzyme inhibition or selective stabilization of a tertiary complex of DNA, topoisomerase, and 1. Since the disclosure of $\mathbf{1}$, little work has been described with derivative analogs ${ }^{10,11}$ or key partial structures ${ }^{12}$ of the natural product that might shed light on its site of action or the

[^0]structural features responsible for the biological activity. In fact, only one such study with the key partial structure 2 lacking the functionalized F ring has been disclosed and suggests that the nondiscriminant redox properties of 1 cannot account for its biological potency. ${ }^{12}$ We have pursued such studies in parallel with the development of a convergent total synthesis of 1 in efforts to provide the natural product and key agents necessary to address the origin of its biological properties. These studies ${ }^{12-15}$ and the resulting synthetic approach are complementary to the initial ${ }^{16}$ and recently described ${ }^{17-20}$ total syntheses of racemic 1 and the extensive preliminary efforts on the development of methodology for the construction of the unusual spiro[4.4]nonene (CD ring system) ${ }^{21}$ or DEF ring system. ${ }^{22}$

Herein we detail the first total synthesis of natural and entfredericamycin A and the preliminary comparative biological

[^1]properties of the two enantiomers as well as that of a set of key partial structures. The key steps of our convergent approach extends our prior efforts and rest on the implementation of a regiospecific intermolecular chromium carbene benzannulation reaction ${ }^{23-28}$ for AB ring construction, ${ }^{12-14}$ a simple aldol closure for introduction of the spiro[4.4]nonene $C D$ ring system, ${ }^{12-14}$ a room temperature inverse electron demand Diels-Alder reaction ${ }^{29}$ of a N -sulfonyl-1-aza-1,3-butadiene ${ }^{30}$ for assemblage of a pyridone F ring precursor, ${ }^{15}$ and a singlestep Michael addition-Claisen condensation for annulation of the DE ring system on this pyridone F ring precursor ${ }^{15}$ (Scheme
(21) Fredericamycin A $\mathrm{ABCD}(\mathrm{E})$ ring construction: Rama Rao, A. V.; Reddy, D. R.; Deshpande, V. H. J. Chem. Soc., Chem. Commun. 1984, 1119. Parker, K. A.; Koziski, K. A.; Breault, G. Tetrahedron Lett. 1985, 26, 2181. Kende, A. S.; Ebetino, F. H.; Ohta, T. Tetrahedron Lett. 1985, 26, 3063. Eck, G.; Julia, M.; Pfeiffer, B.; Rolando, C. Tetrahedron Lett. 1985, 26, 4723. Eck, G.; Julia, M.; Pfeiffer, B.; Rolando, C. Tetrahedron Lett. 1985, 26, 4725. Bach, R. D.; Klix, R. C. J. Org. Chem. 1986, 51 , 749; 1985, 50, 5438. Braun, M.; Veith, R. Tetrahedron Lett. 1986, 27, 179. Bennett, S. M.; Clive, D. L. J. J. Chem. Soc., Chem. Commun. 1986, 878. Bach, R. D.; Klix, R. C. Tetrahedron Lett. 1986, 27, 1983; 1985, $26,985$. Bach, R. D.; Tubergen, M. W.; Klix, R. C. Tetrahedron Lett. 1986, 27, 3565. Mehta, G.; Subrahmanyam, D. Tetrahedron Lett. 1987, 28, 479. Clive, D. L. J.; Angoh, A. G.; Bennett, S. M. J. Org. Chem. 1987, 52, 1339. Ciufolini, M. A.; Browne, M. E. Tetrahedron Lett. 1987, 28, 171. Ciufolini, M. A.; Qi, H.-B.; Browne, M. E. J. Org. Chem. 1988, 53, 4149. Parker, K. A.; Spero, D. M.; Koziski, K. A. J. Org. Chem. 1987, 52, 183. Rama Rao, A. V.; Reddy, D. R.; Annapurna, G. S.; Deshpande, V. H. Tetrahedron Lett. 1987, 28, 451. Rama Rao, A. V.; Sreenivasan, N.; Reddy, D. R.; Deshpande, V. H. Tetrahedron Lett. 1987, 28, 455. Naik, S. N.; Pandey, B.; Ayyangar, N. R. Synth. Commun. 1988, 18, 633. Evans, J. C.; Klix, R. C.; Bach, R. D. J. Org. Chem. 1988, 53, 5519. Toyota, M.; Terashima, S. Tetrahedron Lett. 1989, 30, 829. Rama Rao, A. V.; Rao, B. V.; Reddy, D. R.; Singh, A. K. J. Chem. Soc., Chem. Commun. 1989, 400. Aidhen, I. S.; Narasimhan, N. S. Tetrahedron Lett. 1989, 30, 5323. Pandey, B.; Khire, U. R.; Ayyangar, N. R. J. Chem. Soc., Chem. Commun. 1990, 1791 . Clive, D. L. J.; Khodabocus, A.; Vernon, P. G.; Angoh, A. G.; Bordeleau, L.; Middleton, D. S.; Lowe, C.; Kellner, D. J. Chem. Soc., Perkin Trans. I 1991, 1433. Clive, D. L. J.; Khodabocus, A.; Cantin, M.; Tao, Y. J. Chem. Soc., Chem. Commun. 1991, 1755. Clive, D. L. J.; Middleton, D. S. Isr. J. Chem. 1991, 31, 211 . Kita, Y.; Okunaka, R.; Honda, T.; Kondo, M.; Tamura, O.; Tamura, Y. Chem. Pharm. Bull. 1991, 39, 2106. Clive, D. L. J.; Cantin, M.; Khodabocus, A.; Kong, X. L.; Tao, Y. Tetrahedron 1993, 49, 7917. Rama Rao, A. V.; Singh, A. K.; Reddy, K. M.; Ravikumar, K. J. Chem. Soc., Perkin Trans. 1 1993, 3171 . Mali, R. S.; Jagtap, P. G. Org. Prep. Proc. Int. 1993, 25, 633. Watanabe, M.; Morimoto, H.; Furukawa, S. Heterocycles 1993, 36, 2681, and ref. 12-14.
(22) Fredericamycin A (D)EF ring system and simplified skeletons: Parker, K. A.; Breault, G. A. Tetrahedron Lett. 1986, 27, 3835. Clive, D. L. J.; Sedgeworth, J. J. Heterocycl. Chem. 1987, 24, 509. Rama Rao, A. V.; Reddy, D. R. J. Chem. Soc., Chem. Commun. 1987, 574. Julia, M.; Rolando, C.; Vincent, E.; Xu, J. Z. Heterocycles 1989, 28, 71, Kita, Y.; Ueno, H.; Kitagaki, S.; Kobayashi, K.; Lio, K.; Akai, S. J. Chem. Soc., Chem. Commun. 1994, 701, and ref. 15.
(23) Wulff, W. D. in Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; 1991; Vol 5, p 1065. Dötz, K. H. Angew. Chem., Int. Ed. Engl. 1984, 23, 587.
(24) Dötz, K. H. Pure Appl. Chem. 1983, 55, 1689. Wulff, W. D.; Tang, P. C.; Chan, K.-S.; McCallum, J. S.; Yang, D. C.; Gilbertson, S. R. Tetrahedron 1985, 41, 5813. Semmelhack, M. F.; Bozell, J. J.; Keller, L.; Sato, T.; Spiess, E. J.; Wulff, W.; Zask, A. Tetrahedron 1985, 41, 5803. Wulff, W. D.; Chan, K.-S.; Peterson, G. A.; Brandvold, T. A.; Faron, K. L.; Challener, C. A.; Hyldahl, C. J. Organomet. Chem. 1987, 334, 9.
(25) Dötz, K. H.; Fügen-Köster, B. Chem. Ber. 1980, 113, 1449. Dötz, K. H.; Mühlemeier, J.; Schubert, U.; Orama, O. J. Organomet. Chem. 1983, 247, 187.
(26) Wulff, W. D.; Tang, P.-C.; McCallum, J. S. J. Am. Chem. Soc. 1981, 103, 7677. Wulff, W. D.; Chan, K.-S.; Tang, P. C. J. Org. Chem. 1984, 49, 2293.
(27) Yamashita, A.; Scahill, T. A.; Toy, A. Tetrahedron Lett. 1985, 26, 2969. Yamashita, A.; J. Am. Chem. Soc. 1985, 107, 5823. Yamashita, A.; Timko, J. M.; Watt, W. Tetrahedron Lett. 1988, 29, 2513. Yamashita, A.; Toy, A. Tetrahedron Lett. 1986, 27, 3471 . Yamashita, A.; Toy, A.; Scahill, T. A. J. Org. Chem. 1989, 54, 3625.
(28) Semmelhack, M. F.; Jeong, N.; Lee, G. R. Tetrahedron Lett. 1990, 31, 609. Semmelhack, M. F.; Jeong, N. Tetrahedron Lett. 1990, 31, 605.
(29) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: San Diego, 1987. Boger, D. L. Tetrahedron 1983, 39, 2869. Boger, D. L. Chem. Rev. 1986, 86, 781. Boger, D. L.; Patel, M. Prog. Heterocycl. Chem. 1989, 1, 30. Boger, D. L. Bull. Chim. Soc. Belg. 1990, 99, 599.

Scheme 1

1). The early introduction of the pentadienyl side chain increased the convergency of the synthesis and provided the opportunity to prepare the fully functionalized DEF ring system and the incorporation of readily removed protecting groups at the unactivated phenol sites assured a high yielding deprotection of the resolved penultimate intermediate 41.

Construction of the DEF Ring System of Fredericamycin A. Our approach is based on a concise, four step synthesis of 11 employing a key $\mathrm{LUMO}_{\text {diene-controlled Diels-Alder reaction }}$ of the N-sulfonyl-1-aza-1,3-butadiene 4 followed by a singlestep Michael addition-Claisen condensation for annulation of the DE ring system and the further elaboration of 11 to the fully functionalized DEF ring system. The development of the approach to $\mathbf{1 1}$ has been described ${ }^{15}$ and in the conduct of the work detailed herein has benefitted from one significant improvement. In the preceding studies, the $[4+2]$ cycloaddition of 4 with 5 to provide the cycloadduct 6 was conducted under pressure-promoted Diels-Alder conditions ($13 \mathrm{kbar}, \mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 48 \mathrm{~h}, 82 \%$). We have found that this reaction may be conducted at $25^{\circ} \mathrm{C}$ and room pressure (0.5 equiv $5, \mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}, 95 \%$ based on $5,47 \%$ based on 3) to provide the adduct 6 as a $1: 1$ mixture of $\mathbf{C} 3$-diastereomers in superb conversions (Scheme 2). The noncomplementary addition of the strong electron-withdrawing C 2 -ethoxycarbonyl ${ }^{30}$ group further lowers the inherent low lying LUMO of the N-sulfonyl-1-aza-1,3-butadiene to the extent that even the modestly reactive dienophile 5 participates in a room temperature [$4+2$] cycloaddition reaction. This unusually facile reaction at $25^{\circ} \mathrm{C}$ precludes the need for conventional thermal reaction conditions and the competitive tautomerization of $\mathbf{4}^{31}$ that occurs at elevated temperatures, i.e., $100^{\circ} \mathrm{C} .{ }^{30}$ The crude diene 4 prepared from oxime 3^{32} by low temperature, homolytic rearrangement of the in situ generated O-sulfinate ${ }^{30}$ (1.1 equiv $\mathrm{CH}_{3} \mathrm{SOCl}, 1.0$ equiv

[^2]
Scheme 2

$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CCl}_{4}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$) was used directly in the reaction with 5 and was obtained as a 7:3 mixture of trans and cis isomers of which only the trans isomer productively reacts at $25^{\circ} \mathrm{C}$. The use low reaction temperatures (0 versus $25^{\circ} \mathrm{C}$), short reaction times (10 min versus $2-12 \mathrm{~h}$), and 1.0 equiv versus 1.2 equiv $\mathrm{Et}_{3} \mathrm{~N}^{15}$ in its generation avoid inadvertent tautomerization of the N-sulfonyl-1-aza-1,3-butadiene during the reaction or upon conventional aqueous workup and isolation. It is notable that this diene, while sensitive, is stable to imine hydrolysis during a rapid aqueous workup and could be occasionally purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ indicating that hydrolysis or tautomerization is much less facile than the diene structure might suggest.
The sensitive $[4+2]$ cycloadduct 6 was converted directly to pyridine 7 by treatment with DBU (4.5 equiv, THF, $70^{\circ} \mathrm{C}$, $80-91 \%$). Treatment of 7 with LDA (4-9.6 equiv, $-78^{\circ} \mathrm{C}$, $30-50 \mathrm{~s}$) followed by cyclopentenone ($5-11$ equiv, $-78^{\circ} \mathrm{C}$, $20-30$ s) and finally $\mathrm{EtOH}\left(-78\right.$ to $25^{\circ} \mathrm{C}, 50-85 \%$) under carefully defined reaction conditions provided 10 derived from a single-step Michael addition-Dieckmann condensation. The exceptionally short deprotonation period conducted with excess LDA (4.0-9.6 equiv, 30-50 s) was not only sufficient but was also required to prevent self-Claisen condensation. ${ }^{15}$ The intermediate Michael adduct 9^{15} could be isolated and characterized (96%, HOAc quench after 30 s) and subsequently converted to 10 (NaH , THF, catalytic $\mathrm{EtOH}, 25^{\circ} \mathrm{C}$) but was more conveniently obtained simply by extending the Michael addition reaction time from $30 \mathrm{~s}\left(-78^{\circ} \mathrm{C}\right)$ to $3 \mathrm{~h}\left(25^{\circ} \mathrm{C}\right)$. The addition of EtOH shortly following the addition of cyclopentenone (2030 s) served to significantly improve the conversion of $\mathbf{7}$ to $\mathbf{1 0}$.

[^3]Overall yields of $\mathbf{1 0}$ as high as 85% were obtained on small scales ($200-300 \mathrm{mg})^{15}$ but diminished as the scale of the reaction was increased due to the rapid reaction times of the competitive reactions and the technical time limitations encountered in the addition of the requisite reagents. Typically, 0.51.5 g scale reactions provided 10 in $50-68 \%$ overall conversions.

DDQ oxidation of 10 to the naphthol 11 ($87-94 \%$) followed by protection of the free phenol as its benzyl ether provided $\mathbf{1 2}$ ($82-93 \%$) and completed the preparation of the carbon skeleton of an appropriately functionalized DEF ring system. MnO_{2} oxidation (3 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{6}, 24-48 \mathrm{~h}, 85-96 \%$) of $\mathbf{1 0}$ also provided 11 in excellent conversions but proved less reproducible from batch to batch of commercial oxidant. Therefore, the former procedure was generally employed to prepare 11. Similarly, efforts to invert the two-step sequence for conversion of $\mathbf{1 0}$ to $\mathbf{1 2}$ by first forming the benzyl ether of 10^{33} (10 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}, 0.2$ equiv $\mathrm{Bu}_{4} \mathrm{NI}, 3$ equiv $\mathrm{PhCH}_{2} \mathrm{Br}$, DMF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 86 \%$) followed by MnO_{2} or DDQ oxidation did not lead to aromatization and provided only recovered starting material.

In our approach, we elected to introduce the pentadienyl side chain prior to the alkyne and its subsequent use in the key benzannulation reaction. Not only was this anticipated to provide more advanced intermediates and simplify the final stages of the synthesis but, by design, would also allow the preparation of the fully functionalized DEF subunit of fredericamycin A. This preparation of key partial structures of the natural product for biological assessment was instrumental in our decision to install the pentadienyl side chain at this juncture of the synthesis. Treatment of $\mathbf{1 2}$ with TosMIC (1.2 equiv, 1.4 equiv t-BuOK, 1.2 equiv $\mathrm{EtOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-67$ to $25^{\circ} \mathrm{C}, 7 \mathrm{~h}$, 73\%) provided the homologated nitrile 13 in excellent conversions. This convenient one carbon homologation to a nitrile served to introduce a suitable aldehyde precursor and permitted the elaboration of the pentadienyl side chain without deliberate protection. However, initial attempts to conduct this TosMIC homologation under prescribed reaction conditions ${ }^{34}$ failed to provide 13. Only when the reaction was conducted at low temperature ($<0{ }^{\circ} \mathrm{C}$) was the desired product observed. In the optimization of this reaction, the temperature (-67 to $25^{\circ} \mathrm{C}, 7$ $h)$ and use of a suitable inert solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{DME}>\mathrm{THF}\right.$ $>$ DMSO) that solubilizes the substrate effectively were found to be most important to its successful implementation. Further improvements were obtained by running the reaction for at least 2 h at $25^{\circ} \mathrm{C}$ prior to workup, at modest concentrations (0.1 M) with only a slight excess of reagent (1.2 equiv TosMIC), anhydrous base (1.4 equiv t-BuOK), ${ }^{35}$ and added EtOH (1.2 equiv) while the prescribed conditions recommend much larger excesses. ${ }^{34}$ Under the modified conditions, $\mathbf{1 3}$ was obtained in excellent conversions ($70-73 \%$) and only a trace amount ($0-$ 12%) of the corresponding carboxylic acid derived from in situ hydrolysis of 13 was observed as a competitive reaction
(33) For 1 -ethoxy-3-(ethoxycarbonyl)-5,5a,7,8-tetrahydro-9-benzyloxy6 H -cyclopent $[g]$ isoquinolin-8-one: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40(1 \mathrm{H}$, $\mathrm{s}, \mathrm{C} 4-\mathrm{H}), 7.19-7.15(3 \mathrm{H}, \mathrm{m}), 7.12-7.05(2 \mathrm{H}, \mathrm{m}), 4.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.38\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.27(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{CHHPh})$, $3.19(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph}), 2.87(1 \mathrm{H}, \mathrm{dd}, J=17.6,5.6 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H})$, 2.73 (1H, dd, $J=17.6,3.2 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 2.63$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}$), 2.34 ($1 \mathrm{H}, \mathrm{ddd}$, $J=18.9,8.9,2.3 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H})$, $1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 1.44\left(3 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.38(3 \mathrm{H}, \mathrm{t}, J=$ $6.9 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).
(34) Oldenziel, O. H.; van Leusen, D.; van Leusen, A. M. J. Org. Chem. 1977, 42, 3114. Crombie, L.; Powell, M. J.; Tuchinda, P. Tetrahedron Lett. 1980, 21, 3603.
(35) Use of larger excesses of t - BuOK (2.7 equiv) provided larger amounts of the corresponding carboxylic acid (30-60\%) depending on the reaction conditions. This carboxylic acid could be converted to 13 (1.1 equiv of $\mathrm{Et}_{3} \mathrm{~N}, 1$ equiv of $\mathrm{ClCO}_{2} \mathrm{Et}, 0.5$ equiv of DMAP, 68%).
byproduct. Although this was not routinely effected, conversion of the byproduct carboxylic acid to the ethyl ester provided additional 13 and resulted in combined overall conversions in yields as high as $85-90 \%$. ${ }^{35}$

Selective ester reduction of $\mathbf{1 3}$ achieved by treatment with Dibal-H (3 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene, $-78^{\circ} \mathrm{C}, 97 \%$) followed by Swern oxidation ${ }^{36}$ of 14 (oxalyl chloride-DMSO, 99\%) provided the aldehyde 15. Reduction of 13 with LiBH_{4} (1 equiv, THF, $25^{\circ} \mathrm{C}, 7 \mathrm{~h}, 63 \%$) and MnO_{2} oxidation (5 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, -45 to $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 61 \%$) of $\mathbf{1 4}$ also provided 15 as a single clean product but in lower yields. The subsequent introduction of the pentadienyl side chain was best accomplished with the Wittig reagent 16^{37} (1.2 equiv, THF, -78 to $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 89 \%$) which provided a 8:40:12:40 ratio of cis-cis, cis-trans, transcis, and trans-trans isomers, respectively. Exposure of this mixture to I_{2} (0.05 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} led to isomerization ${ }^{16}$ to a clean $85: 15$ mixture of the desired trans, trans- 17 and cis,trans-17 (95-100\% recovery). Careful chromatography could be employed to provide a further enrichment of the desired trans,trans-17 (22:1) but proved unnecessary. Further enrichment of the mixture was routinely accomplished in the subsequent purifications. The use of 5 equiv HMPA in the Wittig reaction provided only three isomers (Z,E; E,Z; and E,E) in a better ratio of 17:21:62 but in a lower 63\% yield, and the use of 10 equiv HMPA gave even lower conversions (56%). A final improvement was ultimately accomplished using KHMDS as the base and provided three isomers ($\mathrm{Z}, \mathrm{E}, \mathrm{E}, \mathrm{Z}$; and E, E) in a ratio of 18:18:64 in 82% yield. In all cases, the isomerization using I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded a 15:85 ratio of E, Z and the desired E, E isomers. In handling 17 and related intermediates, we noted that both prolonged exposure to light and slow or careful chromatography on SiO_{2} led to consumption of agent. Although this was not unambiguously established, cursory studies revealed that light or acid-catalyzed electrocyclization of the trans,cis isomer may be responsible for this consumption but could be minimized or avoided by protecting the agents from exposure to light and minimizing their contact time with chromatographic supports.

This set the stage for introduction of the alkyne side chain for use in the chromium carbene benzannulation reaction. For this purpose, Dibal-H reduction of the nitrile 17 (2.0 equiv Dibal-H, 0.02 M toluene, $-30^{\circ} \mathrm{C}, 1 \mathrm{~h}, 69-75 \%$) provided cleanly the aldehyde 18 but only when the reaction was conducted in the noncoordinating solvent toluene. Initial modest conversions were improved substantially by the choice of workup conditions necessary to promote hydrolysis of the resulting imine (pH 4 phosphate buffer, $25^{\circ} \mathrm{C}, 20 \mathrm{~min}$) and, importantly, with the rigorous exclusion of air $\left(\mathrm{O}_{2}\right)$ not only during the reduction reaction but also throughout the hydrolysis, workup, and chromatographic purification. The aldehyde 18 proved to be remarkably prone to benzylic oxidation and simply subjecting it to chromatographic purification without the precaution of rigorously excluding air $\left(\mathrm{O}_{2}\right)$ resulted in rapid conversion to the α-hydroxyaldehyde 19 and the oxidative decarbonylation product 20 (eq 1). The nitrile 17 exhibited similar behavior but was sufficiently stable such that special precautionary efforts were not required for its handling or purification. Thus, although the aldehyde 18 could be isolated, purified, and characterized, it could also be isolated crude from the reduction reaction in an exceptionally clean form ($>95 \%$) in good yields ($\geq 70 \%$) and used directly in the subsequent alkyne addition reaction with improvements in the overall conversions. With 20 in hand, deprotection of the benzyl ether and pyridone ethyl

[^4](37) Bohlmann, F.; Mannhardt, H.-J. Chem. Ber, 1956, 89, 1307. Hug, R.; Hansen, H.-J.; Schmid, H. Helv. Chim. Acta 1972, 55, 1828.
ether was examined ($\mathrm{TsOH}, \mathrm{NaBr}, \mathrm{CH}_{3} \mathrm{OH}$, reflux, $6.5 \mathrm{~h}, 81 \%$) and found to cleanly provide 21. In addition to providing the fully functionalized DEF ring system, this insured that the pyridone ethyl ether could be readily deprotected at the final stages of the synthesis.

Suspecting that the sensitivity of aldehyde 18 might be enhanced by the C3 electron-withdrawing group on the isoquinoline, we explored the use of the alternative substrate 22 (eq 2). This less attractive approach would require the late stage introduction of the pentadienyl side chain, but if the resulting intermediates proved easier to handle, this alternative might prove more productive. Protection of the primary alcohol 14 as its TBDMS ether 22^{38} (1.5 equiv of TBDMSCl, 2 equiv of imidazole, DMF, $25^{\circ} \mathrm{C}, 45 \mathrm{~min}, 85 \%$) followed by Dibal-H reduction of the nitrile (2 equiv of Dibal- H , toluene, $-30^{\circ} \mathrm{C}, 1$ h) cleanly provided the aldehyde 23^{38} which proved to be as sensitive to adventitous air $\left(\mathrm{O}_{2}\right)$ oxidation as $\mathbf{1 8}$. Thus, it would seem that the approaches to fredericamycin A that proceed through such intermediates must contend with their unusual air sensitivity. Those disclosed to date ${ }^{17}$ do detail similar difficulties in working with the agents but have not discussed the extent of this behavior or defined its origin.

Before the extent of the sensitivity of aldehyde $\mathbf{1 8}$ toward air $\left(\mathrm{O}_{2}\right)$ was fully appreciated, we had examined an alternative approach ${ }^{12-14}$ which relied on an acid-catalyzed liberation of the aldehyde from an enol ether obtained by Wittig reaction of the C8 ketone (Scheme 3). Thus, reaction of $\mathbf{2 3}^{15}$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHOMe}$ (10 equiv, THF-HMPA, -78 to $25^{\circ} \mathrm{C}, 25 \mathrm{~h}$,

[^5]
Scheme 3

73%) cleanly provided 24^{39} as a $4: 1$ mixture of isomers but only under conditions where t-BuOK (10 equiv) ${ }^{12-14}$ serves as the base to generate the ylid and the reaction failed under more conventional conditions. Ester reduction (1 equiv of LiBH_{4}, THF, $25^{\circ} \mathrm{C}, 7 \mathrm{~h}, 63 \%$) and oxidation of the alcohol 25^{40} (10 equiv $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}, 71 \%$) provided the aldehyde 26.4 Without optimization, introduction of the pentadienyl side chain to provide 28^{42} was achieved with the phosphine oxide 27^{43} (THF-HMPA, -78 to $-25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 32 \%$) which, in our hands, has proven less satisfactory than the Wittig reagent 16. Attempted acid-catalyzed deprotection of 28 with hydrolysis of the enol ether (TsOH , dioxane $-\mathrm{H}_{2} \mathrm{O}$) failed to provide 29 in acceptable conversions. Similarly, acid-catalyzed deprotection of 24 (1 equiv of $\mathrm{TsOH}, 3: 1 \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 36 \mathrm{~h}$) failed to provide the corresponding aldehyde but provided a mixture of
(39) Compound 24 ($73 \mathrm{mg}, 73 \%$) was isolated as a mixture of two isomers ($4: 1$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.01$ and $7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-$ $\mathrm{H}), 7.59$ and $7.50(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.45$ and $7.42(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 7.44$ and $7.37(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 7.29$ and $7.27(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 7.32$ and $6.26\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHOCH}_{3}\right), 4.98$ and $4.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.45$ and 4.44 $\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.22$ and $4.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.58$ and 3.49 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}=\mathrm{C}\right), 3.13$ and $3.00\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.82$ and $2.72\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45$ and $1.44(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); FABHRMS (NBA-CsI) m/e 552.0787 ($\mathrm{M}+\mathrm{Cs}^{+}$requires 552.0787).
(40) Compound 25 was obtained as a mixture of two isomers (5:1): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.61$ and $7.53(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.45$ and $7.38(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 7.23$ and $6.21\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}=\mathrm{C}\right), 7.03$ and $6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 4.96$ and 4.99 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.72$ and $4.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.13$ and $4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 3.59 and $3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHOCH}_{3}\right), 3.09$ and $2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.81$ and $2.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
(41) For the major isomer of 26: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.02$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.82(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 7.59(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} 5-\mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{t} . J=6.8 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{t}, J=$ $\left.2.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHOCH}_{3}\right), 4.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.58(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}=\mathrm{CHOCH})_{3}\right), 3.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
(42) For the major isomer of 28: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.61$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz})$, $7.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCH}_{3}\right.$ and $\left.\mathrm{C} 5-\mathrm{H}\right), 6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.47$ $\left(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCH}_{3}\right), 6.27(1 \mathrm{H}, \mathrm{t}, J=14.9 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{3}\right), 5.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH} 3), 4.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.16(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CHOCH}_{3}\right), 3.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.81(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.87\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}_{3}\right)$.
(43) Lythgoe, B.; Moran, T. A.; Nambudiry, M. E. N.; Ruston, S. J. Chem. Soc., Perkin Trans. I 1976, 2386.

Scheme 4

$30^{44}(48 \%)$ and 23 (21%) derived from its benzylic oxidation. Finally, reasoning that a more acid labile enol ether that may be deprotected without protonation of the vinyl ether might successfully provide the aldehyde, we prepared 31. However, attempts to deprotect $\mathbf{3 1}$ provided the same mixture of $\mathbf{3 0}$ and 23.

Introduction of the ABC Ring System of Fredericamycin A and Completion of the Total Synthesis. In preceding studies, ${ }^{12-14}$ we described a highly convergent approach to the ABC ring system based on a regiospecific chromium carbene benzannulation reaction for assemblage of the $A B$ ring system followed by a simple aldol closure for construction of the spiro[4.4]nonene with introduction of ring C. The successful use of this approach in the preparation of the key partial structure 2^{12} suggested all elements of this sequence might be fully adaptable to the natural product, and we were guardedly optimistic that the presence of the F ring and its pentadienyl side chain would not compromise its implementation. The extension of these studies to fredericamycin A proved straightforward.

Treatment of the sensitive aldehyde 18 with the lithium acetylide $\mathbf{3 2}^{45}$ and subsequent protection of the resulting alcohol 33 provided the alkyne $34(54 \%)$ and a key component for the benzannulation reaction (Scheme 4). Due to the extraordinary sensitivity of the aldehyde 18 and the chromatographic losses often encountered in careful purifications of substrates containing the diene side chain, the three-step conversion of $\mathbf{1 7}$ to $\mathbf{3 4}$ was generally accomplished without the intermediate purification

[^6]of $\mathbf{1 8}$ or $\mathbf{3 3}$ and provided 34 in better overall yield. The challenging step in this conversion proved to be the addition of the acetylide $\mathbf{3 2}$ to the sensitive aldehyde $\mathbf{1 8}$ which required the rigorous exclusion of air. The corresponding cerium reagent ${ }^{46}$ derived from 32 was also examined and dependably provided $33 / 34$. In agreement with our preceding studies, the benzannulation reaction of $\mathbf{3 4}$ with the functionalized chromium carbene complex 35^{12} proceeded best in heptane (0.16 M in alkyne) in the presence of $\mathrm{Ac}_{2} \mathrm{O}^{27}$ (1-2 equiv) under conditions $\left(50{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ that do not acetylate the product phenol and provided 36 as a single regioisomer and as a 3:1 mixture of diastereomers. Notably, this reaction failed to provide 36 in the absence of $\mathrm{Ac}_{2} \mathrm{O}$ which, in preceding studies, was shown to accelerate the benzannulation reaction ${ }^{12-14}$ and may affect the reaction course. Consistent with past observations, the regioselectivity of this reaction may be attributed to the modest steric differences in the alkyne α substituents that dictate the regioselectivity of the initial $[2+2]$ chromium metallocyclobutene adduct preferentially placing the large substituent ortho to the product phenol. More subtle is the overall effect of the alkyne structure on the success of the benzannulation reaction of the chromium carbene complex 35 which incorporates an alkoxy substituent ortho to the carbene. As defined in the independent observations of Semmelhack, ${ }^{28}$ the facility and reaction course with which such complexes participate in the benzannulation reactions with propargylic substrates is substantially diminished although the use of bulky alcohol protecting groups favors naphthol formation over competitive reactions. This subtle but important contribution to the success of the reaction of 35 through employment of the bulky bis-TBDMS ether 34 together with the modified reaction conditions ${ }^{12}$ proved necessary for significant generation of 36.

Subsequent protection of the free phenol 36 as the benzyl ether 37 was accomplished under mild conditions (25 equiv of $\mathrm{PhCH}_{2} \mathrm{Br}, 2$ equiv of $\mathrm{Bu}_{4} \mathrm{NI}, 15$ equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, 25 ${ }^{\circ} \mathrm{C}, 44-54 \mathrm{~h}, 57 \%$) notably without competitive elimination of t - $\mathrm{BuMe}_{2} \mathrm{SiOH}$ via orthoquinomethide generation. The use of higher reaction temperatures ($55^{\circ} \mathrm{C}$, refluxing acetone) provided a mixture of uncharacterized products. Deprotection of the benzylic alcohols was effectively accomplished through treatment with $\mathrm{Bu}_{4} \mathrm{NF}$ (5.2 equiv, THF, 10.5 h), ${ }^{47}$ provided the diol 38, and set the stage for introduction of the spiro $C D$ ring system. Following our prescribed conditions, ${ }^{12}$ Swern oxidation 36 of the diol 38 to the keto aldehyde 39 under carefully designed conditions precedes in situ base-catalyzed aldol closure to 40. The success of the Swern oxidation (TFAA-DMSO) proved dependent on the reaction conditions where activation of both alcohols through formation of the bisalkoxysulfonium salt ($60 \mathrm{~min},-78{ }^{\circ} \mathrm{C}$) preceded introduction of DBU and basecatalyzed elimination of dimethyl sulfide with formal oxidation of the primary and secondary alcohols. If the base was added prior to complete activation of both alcohols, competitive displacement reactions effectively compete with the desired oxidations. In addition, when this Swern oxidation was carried out with a stronger base (DBU versus $\mathrm{Et}_{3} \mathrm{~N}$) and the reaction time and temperature extended ($30 \mathrm{~h},-78$ to $25^{\circ} \mathrm{C}$), clean basecatalyzed aldol closure to 40 was observed under the reaction conditions (eq 3). Subsequent Swern oxidation of 40 (TFAADMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 60 \mathrm{~min}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$) provided our penultimate intermediate 41. Each of the steps in the transformation of 37 to 41 were so clean that it was accomplished without the purification of intermediates and provided 41 in superb conversions ($57-68 \%$ overall from 37)

[^7](47) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
with an average yield of approximately $93-94 \%$ for each of the six reactions.

Two-step deprotection of $41\left(\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}\right.$; $\mathrm{TsOH}, \mathrm{NaBr}, \mathrm{CH}_{3} \mathrm{OH}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$) with air oxidation (3 h) following the BBr_{3} treatment served admirably to provide 1 (85%) and completed the synthesis of fredericamycin A. Analogous to our earlier observations, ${ }^{12}$ the BBr_{3} treatment cleanly removed the two MOM ethers, the two benzyl ethers, and the activated C 4 methyl ether leaving intact the required C6 methyl ether. Partial deprotection of the pyridone O-ethyl ether was observed under the conditions of the BBr_{3} treatment, and this was cleanly and completely removed upon air oxidation and subsequent treatment with $\mathrm{TsOH}-\mathrm{NaBr} .{ }^{16}$ This provided 1 identical in all respects with a sample of authentic material (${ }^{1} \mathrm{H}$ NMR, IR, UV, MS, TLC: $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}$ (87:3: 3), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}-\mathrm{HOAc}(10: 10: 1)$, and $5 \% \mathrm{CH}_{3} \mathrm{OH}-$ CHCl_{3}). The deliberate use of labile protecting groups introduced throughout the synthesis permitted a dependably clean final deprotection sequence that leaves the C6 methyl ether unaffected and distinguishes the final stages of this synthesis from some of the prior efforts. ${ }^{17-19}$

Resolution and Preparation of Natural and ent-Fredericamycin A. As a consequence of the potent activity of the natural product and the uncertainty surrounding its mechanism of action, we were especially interested in the evaluation of both enantiomers of fredericamycin A. The examination of the unnatural enantiomer, like key partial structures, is anticipated to provide seminal observations that may distinguish both the site of action and the structural features contributing to the biological effects of the natural product. ${ }^{48}$ To this end, the resolution of the penultimate precursor 41 was examined on a series of HPLC chiral phases (ChiralPac OD, OB-H, AD, OT). The best resolution was observed on a ChiralPac OD column. Racemic 41 could be resolved on a HPLC analytical column $(0.46 \times 25 \mathrm{~cm}, 10 \% i$ - PrOH -hexane, $0.9 \mathrm{~mL} / \mathrm{min}$ flow rate, α $=1.38$) and preparatively separated on a semipreparative HPLC column ($2 \times 25 \mathrm{~cm}, 20 \% i$-PrOH-hexane, $2-6 \mathrm{~mL} / \mathrm{min}, \alpha=$ 1.14) to afford the two enantiomers ($>99 \%$ ee). Independent deprotection of the two enantiomers as detailed above provided natural and ent-fredericamycin A ($>99 \%$ ee). The circular dichroism spectra of the two enantiomers of the synthetic and natural fredericamycin A permitted the unambiguous assignments of the natural and unnatural enantiomers of synthetic 1 as well as 41 (Figures $1-3$). Like the $C D$ for natural fredericamycin A recorded at a pH of $8.0\left([\mathrm{\Theta}]^{25}{ }_{396}+2.5 \times 10^{4}\right.$ $\mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{dmol}{ }^{-1}, 20 \% \mathrm{DMF}-\mathrm{CH}_{3} \mathrm{OH} /$ blue form), synthetic ent-1 exhibited the same but opposite $\mathrm{CD}\left([\mathrm{O}]^{25}{ }_{396}-2.4 \times 10^{4}\right.$ deg $\left.\cdot \mathrm{cm}^{2} \cdot \mathrm{dmol}^{-1}, 20 \% \mathrm{DMF}-\mathrm{CH}_{3} \mathrm{OH}\right){ }^{49}$ At acidic pH with the red, protonated form of fredericamycin A , the long wavelength $C D$ band becomes considerably less intense, reverses sign, and more closely resembles the CD spectrum of the corresponding enantiomers of 41 (Figure 3).

[^8]

Figure 1. CD spectrum of 41 in i - PrOH.

Figure 2. CD spectrum of 1 in $20 \% \mathrm{DMF}-\mathrm{CH}_{3} \mathrm{OH} / \mathrm{Et}_{3} \mathrm{~N}$ (blue form).
In Vitro Cytotoxic Activity. Summarized in Table 1 is the L1210 cytotoxic activity of natural and ent-fredericamycin A, the key partial structure 2 constituting the fully functionalized ABCDE ring system of fredericamycin A and 21 constituting the fully functionalized DEF ring system. Both natural and ent-1 exhibited potent and essentially indistinguishable cytotoxic activity ($\mathrm{IC}_{50}=0.03$ and $0.04 \mu \mathrm{~g} / \mathrm{mL}$, respectively). Both 2 and 20 were considerably less potent than 1 (ca. $100 \times$) and comparable in cytotoxic potency with each other. While it is perhaps surprising that 21 exhibits any activity, the considerably diminished activity of $\mathbf{2}$ illustrates that the functionalized F ring of fredericamycin contributes significantly to its properties. The surprising but informative comparable cytotoxic potency of the two enantiomers of 1 should permit their use in distinguishing the site and potential mechanism of action of fredericamycin A and such studies are in progress.

Figure 3. CD spectrum of $\mathbf{1}$ in 20% DMF- $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{TFA}$ (red form).
Table 1. In Vitro Cytotoxic Activity

agent	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL}, \mathrm{L} 1210)$
fredericamycin A	0.03
ent-fredericamycin A	0.04
$\mathbf{2}$	$\mathbf{2}$
$\mathbf{2 1}$	7

Experimental Section

3,6-Bis(ethoxycarbonyl)-2,2-diethoxy-4-methyl-1-(methylsulfonyl)-1,2,3,4-tetrahydropyridine (6). A solution of ethyl (E)-2-(hydroxy-imino)-3-pentenoate $3^{15.30}(8.17 \mathrm{~g}, 52 \mathrm{mmol})$ in CCL_{4} (350 mL) was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}$ ($13 \mathrm{~mL}, 52 \mathrm{mmol}, 1.0$ equiv) and methylsulfinyl chloride ($3.8 \mathrm{~mL}, 57.2 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min during which time the formation of a white precipitate was observed. The mixture was poured into a separatory funnel containing 200 mL of cold water. $\mathrm{CCl}_{4}(100 \mathrm{~mL})$ was used to wash the reaction flask and was added to the contents of the separatory funnel. After decantation, the organic phase was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressure to yield the crude diene 4 which was used without further purification.
The crude diene 4 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and treated with ethyl 3,3 -diethoxyacrylate ($\mathbf{5}, 4.9 \mathrm{~mL}, 26 \mathrm{mmol}, 0.5$ equiv), and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h . The mixture was evaporated under reduced pressure and purified by chromatography $\left(\mathrm{SiO}_{2}, 7 \times 30\right.$ $\mathrm{cm}, 30 \% \mathrm{EtOAc}$-hexane) to afford $\mathbf{6}(10.04 \mathrm{~g}, 95 \%$ based on $\mathbf{5} ; 47 \%$ based on $\mathbf{3}$) as a $1: 1$ mixture of endo and exo isomers identical in all respects with authentic material. ${ }^{15}$
3,6-Bis(ethoxycarbonyl)-2-ethoxy-4-methylpyridine (7). A solution of $6(13.11 \mathrm{~g}, 32.2 \mathrm{mmol})$ in $\operatorname{THF}(300 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was treated with DBU ($22 \mathrm{~mL}, 145 \mathrm{mmol}, 4.5$ equiv). The mixture was stirred at $70^{\circ} \mathrm{C}$ for 40 h under N_{2} before it was concentrated under vacuum. Chromatography ($\mathrm{SiO}_{2}, 7 \times 25 \mathrm{~cm}, 20 \% \mathrm{EtOAc}$-hexane) afforded 7 ($7.52 \mathrm{~g}, 9.05 \mathrm{~g}$ theoretical, 83%; typically $81-91 \%$) identical in all respects with authentic material. ${ }^{15}$

1-Ethoxy-3-(ethoxycarbonyl)-5,5a,7,8-tetrahydro-9-hydroxy-6Hcyclopent $[g]$ isoquinolin-8-one (10). 1.0 mmol : Freshly distilled THF (90 mL) was introduced into a flame-dried 250 mL flask under Ar through a syringe. Anhydrous $i-\mathrm{Pr}_{2} \mathrm{NH}(0.67 \mathrm{~mL}, 4.8 \mathrm{mmol}, 4.8$ equiv) and $n-\operatorname{BuLi}(1.60 \mathrm{~mL}$ of 2.5 M in hexane, $4.0 \mathrm{mmol}, 4.0$ equiv) were added at $-20^{\circ} \mathrm{C}$ with stirring. The solution was cooled to $-78^{\circ} \mathrm{C}$ and stirred for 10 min before 10 mL of a 0.10 M solution of 7 in THF ($1.0 \mathrm{mmol}, 1$ equiv) was introduced by syringe over 5 s . The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 25 s before cyclopen-
tenone ($8,0.40 \mathrm{~mL}, 5.0 \mathrm{mmol}, 5.0$ equiv) was introduced. Immediately following the addition, the reaction mixture turned from blood-red to bright yellow. After 20 s , EtOH (1.0 mL) was added, the cold bath was removed, and the mixture was stirred at $25^{\circ} \mathrm{C}(3 \mathrm{~h})$ under Ar. The mixture was acidified with the addition of $\mathrm{HOAc}(1.0 \mathrm{~mL})$, diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ $\mathrm{mL}, 2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Flash chromatography $\left(\mathrm{SiO}_{2}, 1.5 \times 20 \mathrm{~cm}, 25-40 \% \mathrm{EtOAc}\right.$-hexane gradient elution) afforded 10 ($271 \mathrm{mg}, 317 \mathrm{mg}$ theoretical, 85%) as a bright yellow solid identical in all respects with authentic material: mp 125$126^{\circ} \mathrm{C}$ (EtOAc-hexane, yellow flakes), lit. ${ }^{15} \mathrm{mp} 125-126^{\circ} \mathrm{C}$.
2.0 mmol : Freshly distilled THF (190 mL) was introduced into an oven-dried, flame-dried 500 mL flask equipped with a three-way joint under Ar through a syringe. Freshly distilled $i-\mathrm{Pr}_{2} \mathrm{NH}(2.8 \mathrm{~mL}, 20$ $\mathrm{mmol}, 10.4$ equiv) was added followed by dropwise addition of $n-\mathrm{BuLi}$ ($7.4 \mathrm{~mL}, 18.5 \mathrm{mmol}$, 9.6 equiv, 2.5 M in hexane) at $-36^{\circ} \mathrm{C}$ with stirring. The solution was cooled to $-80^{\circ} \mathrm{C}$ and stirred for 20 min before 10 mL of a 0.192 M solution of $7(540 \mathrm{mg}, 1.92 \mathrm{mmol})$ was introduced by syringe over 5 s . The reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for an additional 45 s before cyclopentenone $(8,1.8 \mathrm{~mL}, 21.8$ $\mathrm{mmol}, 11$ equiv) was introduced over 3 s . After $27 \mathrm{~s}, \mathrm{EtOH}(2.5 \mathrm{~mL})$ stored over $4 \AA$ MS was added, the cold bath was removed, and the mixture was stirred at $25^{\circ} \mathrm{C}$ under Ar for 2 h . The mixture was treated with HOAc (2.5 mL) and concentrated under reduced pressure without heating. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and extracted with half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Two such reactions were combined. Flash chromatography $\left(\mathrm{SiO}_{2}, 3.5 \times 26 \mathrm{~cm}, 36 \%\right.$ EtOAc-hexane) afforded $\mathbf{1 0}$ ($774 \mathrm{mg}, 1.218 \mathrm{~g}$ theoretical, 64%) as a yellow solid identical in all respects with authentic material. ${ }^{15}$
5.0 mmol : Freshly distilled THF (450 mL) was introduced into a flame-dried 1 L flask under Ar. Anhydrous $i-\mathrm{Pr}_{2} \mathrm{NH}(2.8 \mathrm{~mL}, 20 \mathrm{mmol}$, 4 equiv) was added followed by dropwise addition of $n-\operatorname{BuLi}(8.0 \mathrm{~mL}$, $20 \mathrm{mmol}, 4$ equiv, 2.5 M in hexane) at $-20^{\circ} \mathrm{C}$ with stirring. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ before 50 mL of a 0.1 M solution of 7 $(1.41 \mathrm{~g}, 5.0 \mathrm{mmol})$ was introduced over 5 s . The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 s before cyclopentenone $(1.86 \mathrm{~mL}, 22.5$ mmol, 4.5 equiv) was introduced. After 20 s , $\mathrm{EtOH}(5.0 \mathrm{~mL})$ was added, the cold bath was removed, and the mixture stirred at $25^{\circ} \mathrm{C}$ for 6 h . The mixture was treated with HOAc $(5.0 \mathrm{~mL})$ and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ $\mathrm{mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 125 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography $\left(\mathrm{SiO}_{2}, 3.5 \times 26\right.$ $\mathrm{cm}, 35 \% \mathrm{EtOAc}$-hexane) afforded $10(1.09 \mathrm{~g}, 1.58 \mathrm{~g}$ theoretical, 69%) as a yellow solid identical in all respects with authentic material. ${ }^{15}$
1-Ethoxy-3-(ethoxycarbonyl)-7,8-dihydro-9-hydroxy-6H-cyclopent-[g]isoquinolin-8-one (11). Method A: A solution of 10 ($2 \mathrm{~g}, 6.3$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was treated with DDQ $(1.5 \mathrm{~g}, 6.62 \mathrm{mmol}$, 1.05 equiv). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 min , filtered over Celite and the solid washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The organic phase was successively washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (70 mL), saturated aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~mL}\right.$), and distilled $\mathrm{H}_{2} \mathrm{O}(50$ mL). The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to afford pure $11(1.72 \mathrm{~g}, 1.99 \mathrm{~g}$ theoretical, $87 \%)$ identical in all respects with authentic material and sufficiently pure for use in the following step: $\mathrm{mp} 188-189^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right), 1 \mathrm{lit} .{ }^{15} \mathrm{mp} 188-$ $189^{\circ} \mathrm{C}$.

Method B: A suspension of MnO_{2} ($495 \mathrm{mg}, 5.64 \mathrm{mmol}, 3.6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was treated at $25^{\circ} \mathrm{C}$ with a solution of 10 in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(30 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ over 44 h and filtered over Celite. The Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$, and the combined solutions were concentrated under reduced pressure to afford $11(457 \mathrm{mg}, 492 \mathrm{mg}$ theoretical, 93%) identical in all respects with authentic material. ${ }^{15}$
9-(Benzyloxy)-1-ethoxy-3-(ethoxycarbonyl)-7,8-dihydro-6 H -cyclopent $[g]$ isoquinolin-8-one (12). Method A: A solution of $11(2.65 \mathrm{~g}$, 7.85 mmol) in DMF (100 mL) was treated sequentially with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($5.5 \mathrm{~g}, 39.8 \mathrm{mmol}, 5.07$ equiv), Bu NI ($540 \mathrm{mg}, 1.46 \mathrm{mmol}, 0.18$ equiv), and $\mathrm{PhCH}_{2} \mathrm{Br}(2.5 \mathrm{~mL}, 21 \mathrm{mmol}, 2.7$ equiv). The reaction mixture was stirred at $25^{\circ} \mathrm{C}(6 \mathrm{~h})$ before it was diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and
concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ EtOAchexane) afforded 12 ($2.96 \mathrm{~g}, 3.18 \mathrm{~g}$ theoretical, 93%) identical in all respects with authentic material. ${ }^{15}$

Method B: A suspension of $\mathbf{1 1}(500 \mathrm{mg}, 1.6 \mathrm{mmol})$ in DMF (12 mL) was treated sequentially with benzyl bromide $(0.6 \mathrm{~mL}, 4.76 \mathrm{mmol}$, 3 equiv) and $\mathrm{Ag}_{2} \mathrm{O}$ ($514 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.4$ equiv). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h , filtered over Celite, and diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and decanted, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed $\left(\mathrm{SiO}_{2}, 3 \times 15 \mathrm{~cm}, 25 \% \mathrm{EtOAc}\right.$-hexane) to afford $12(530 \mathrm{mg}, 643 \mathrm{mg}$ theoretical, 82%) identical in all respects with authentic material: $\mathrm{mp} 159-160^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right)$, lit. ${ }^{15} \mathrm{mp}$ 159$160^{\circ} \mathrm{C}$.

9-(Benzyloxy)-8-cyano-1-ethoxy-3-(ethoxycarbonyl)-7,8-dihydro$\mathbf{6 H}$-cyclopent[g]isoquinoline (13). A solution of $\mathbf{1 2}$ ($800 \mathrm{mg}, 1.97$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with TosMIC ($468 \mathrm{mg}, 2.40$ $\mathrm{mmol}, 1.21$ equiv) and cooled to $-67^{\circ} \mathrm{C}$. EtOH ($116 \mu \mathrm{~L}, 1.97 \mathrm{mmol}$, 1.21 equiv) and t-BuOK ($337 \mathrm{mg}, 2.76 \mathrm{mmol}, 1.4$ equiv) were added sequentially and stirring was continued for 5 h while the cold bath was allowed to warm to $10^{\circ} \mathrm{C}$ gradually. The cold bath was removed and the mixture was stirred at $25^{\circ} \mathrm{C}(2 \mathrm{~h})$ before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and acidified with the addition of aqueous $\mathrm{HCl}(0.06$ $\mathrm{M}, 50 \mathrm{~mL}$). The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 3.5 \times 25 \mathrm{~cm}, 20 \% \mathrm{EtOAc}\right.$-hexane) afforded 13 ($598 \mathrm{mg}, 820 \mathrm{mg}$ theoretical, 73%) as a white solid: $\mathrm{mp} \mathrm{123-124}$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} 5-\mathrm{H}), 7.47-7.32(5 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{PhCHH}), 5.09$ $(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{PhCH} H), 4.69(1 \mathrm{H}, \mathrm{dq}, J=17.2,7.1 \mathrm{~Hz}, \mathrm{Cl}-$ $\left.\mathrm{OCHHCH} \mathrm{H}_{3}\right), 4.66\left(1 \mathrm{H}, \mathrm{dq}, J=17.2,7.1 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{OCH} H \mathrm{CH}_{3}\right), 4.43$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.82(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}$, $\mathrm{CHCN}), 3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{HH}), 3.04(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H} H), 2.36(2 \mathrm{H}, \mathrm{m}$, C6-H2), $1.43\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.37(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.6\left(\mathrm{e}, \mathrm{CO}_{2} \mathrm{Et}\right), 159.7(\mathrm{e})$, 152.5 (e), 147.7 (e), 141.8 (e), 139.4 (e), 137.1 (e), 132.9 (e), 128.5 (o, two CH), 128.1 (o), 128.0 (o, two CH), 120.3 (e), 119.8 (o), 118.3 (o), 115.3 (e), $77.3\left(\mathrm{e}, \mathrm{PhCH}_{2}\right), 62.8\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.5\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $31.8(\mathrm{o}, \mathrm{CHCN}), 31.7\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.3\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 14.4$ (o, two $\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (KBr) $\nu_{\max } 2983,2930,2879,2228,1700,1566,1483$, 1421, 1339, 1241, 1091, 1029, 889, 750, $693 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 417.1825\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 417.1814). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $72.10 ; \mathrm{H}, 5.81$; N, 6.73. Found: C, 71.73; H, 5.44; N, 6.67.

The corresponding carboxylic acid was also isolated on occasion in variable amounts ($0-12 \%$). For 9-(benzyloxy)-8-cyano-1-ethoxy-7,8-dihydro-6H-cyclopent[g]isoquinoline-3-carboxylic acid: mp 156-157 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 8.01(1 \mathrm{H}$, $\mathrm{s}, \mathrm{C} 4-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 7.44-7.30(5 \mathrm{H}, \mathrm{m}), 5.25(1 \mathrm{H}, \mathrm{d}, J=$ $11.3 \mathrm{~Hz}, \mathrm{PhCHH}), 5.03(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{PhCH} H), 4.54(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J=8.2,5.0 \mathrm{~Hz}, \mathrm{CHCN}), 3.28(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-$ $H \mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H} H), 2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}_{2}\right), 1.36(3 \mathrm{H}, \mathrm{t}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.0\left(\mathrm{e}, \mathrm{CO}_{2} \mathrm{H}\right), 159.4$ (e), 152.8 (e), 148.9 (e), 141.9 (e), 136.8 (e), 136.7 (e), 133.7 (e), 128.5 (o, two CH), 128.3 (o), 127.8 (o, two CH), 120.4 (o), 120.2 (e), 117.3 (o), 115.5 (e), $77.3\left(\mathrm{e}, \mathrm{PhCH}_{2}\right), 63.5\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.8(\mathrm{o}, \mathrm{CHCN})$, $31.7\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.1\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 14.2\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (KBr) $\boldsymbol{v}_{\text {max }}$ 2995, 2892, 2626 (br), 2236. 1697, 1564, 1451, 1323, 1277, 1103, 954, $882,728,692 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $389.1510\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 389.1501). Anal. Calçd for $\mathrm{C}_{33} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C , 71.12; H, 5.19; N, 7.21. Found: C, 71.04; H, 5.01; N, 7.07.

9-(Benzyloxy)-8-cyano-1-ethoxy-3-(hydroxymethyl)-7,8-dihydro6 H -cyclo-pent $[\mathrm{g}]$ isoquinoline (14). A solution of 13 ($723 \mathrm{mg}, 1.74$ mmol) in anhydrous THF (25 mL) at $-78^{\circ} \mathrm{C}$ under Ar was treated with 1.0 M solution of Dibal-H in toluene ($5.8 \mathrm{~mL}, 3.3$ equiv). The resulting reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 3 h before it was quenched with the addition of $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$, diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was further diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ $60 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under
reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 3 \times 20 \mathrm{~cm}, 30 \% \mathrm{EtOAc}-\right.$ hexane) afforded 14 ($599 \mathrm{mg}, 92 \%$, typically $92-97 \%$) as a white solid and 15 ($40 \mathrm{mg}, 5 \%$). The combined yield of the desired products 14 and 15 was 97%. For 14: $\mathrm{mp} 100-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.49-7.33(5 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H})$, $5.24(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{PhCHH}), 5.07(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{PhCH} H)$, $4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.56\left(2 \mathrm{H}\right.$, two dq, $\left.J=13.8,6.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.80(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.3 \mathrm{~Hz}, \mathrm{CHCN}), 3.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.22(1 \mathrm{H}$, $\mathrm{dt}, J=16.5,8.2 \mathrm{~Hz}, \mathrm{C} 7-H \mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{ddd}, J=16.4,8.0,4.3 \mathrm{~Hz}$, C $7-\mathrm{HH}$) , $2.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}_{2}\right), 1.35\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.4$ (e), 152.3 (e), 150.3 (e), 147.1 (e), 142.8 (e), 137.1 (e), 129.8 (e), 128.3 (o, two CH), 127.9 (o), 127.8 (o, two CH$), 120.5$ (e), 118.1 (o), 112.6 (e), 110.2 (o), 76.8 (e, PhCH_{2}), $64.3\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{OH}\right), 62.3\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.5\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.4(\mathrm{o}, \mathrm{CHCN})$, $31.2\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}) \nu_{\max } 3308(\mathrm{br}), 3220$ (br). 3065, 3032, 2993, 2976, 2952, 2896, 2236, 1630, 1570, 1478, $1458,1415,1376,1360,1325,1140,1103,1077,1061,978,958,873$, $730,694 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $375.1718\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 375.1709). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 73.78 ; \mathrm{H}, 5.92$; N, 7.48. Found: C, 73.44; H, 5.95; N, 7.25 .

9-(Benzyloxy)-8-cyano-1-ethoxy-7,8-dihydro-6H-cyclopent $[g]$ iso-quinoline-3-carboxaldehyde (15). A solution of oxalyl chloride (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ under Ar was treated with anhydrous DMSO (0.38 mL). After stirring at $-70^{\circ} \mathrm{C}$ for 5 min , the resulting solution was treated with a solution of $14(310 \mathrm{mg}, 0.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and stirred at $-70^{\circ} \mathrm{C}$ for 15 min before $E t_{3} \mathrm{~N}(1.4 \mathrm{~mL})$ was introduced. The cold bath was removed, and the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over 20 min before it was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Chromatography ($\mathrm{SiO}_{2}, 2 \times 20 \mathrm{~cm}, 20 \% \mathrm{EtOAc}$-hexane) afforded 15 ($304 \mathrm{mg}, 308 \mathrm{mg}$ theoretical, 99%) as a white solid: mp $89-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.04(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.87$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 7.50-7.35(5 \mathrm{H}, \mathrm{m}), 5.32(1 \mathrm{H}, \mathrm{d}, J$ $=11.2 \mathrm{~Hz}, \mathrm{PhCHH}), 5.14(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{PhCH} H), 4.70(2 \mathrm{H}$, two dq, $\left.J=14.8,7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.84(1 \mathrm{H}$, dd, $J=8.5,4.4 \mathrm{~Hz}$, $\mathrm{CHCN}), 3.33(1 \mathrm{H}, \mathrm{dt}, J=16.7,8.4 \mathrm{~Hz}, \mathrm{C} 7-H \mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{ddd}, J=$ $16.5,8.4,4.7 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H} H), 2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}_{2}\right), 1.43(3 \mathrm{H}, \mathrm{t}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 192.9(\mathrm{o}, \mathrm{CHO}), 160.4$ (e), 152.7 (e), 148.0 (e), 144.5 (e), 141.5 (e), 137.0 (e), 133.7 (e), 128.5 (o, two CH), 128.2 (o), 128.0 (o, two CH), 120.6 (o, C4), 120.2 (e), 117.0 (o, C5), 116.1 (e), 77.4 (e, PhCH_{2}), $63.0\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 31.9 (o, C8), $31.7\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.3\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 14.4\left(\mathrm{o}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (KBr) $v_{\max } 3064,3032,2981,2934,2897,2813,2715,2244,1704,1619$, $1594,1567,1485,1474,1456,1417,1359,1338,1220,1170,1158$, $1143,1102,1054,1028,1003,969,899,735,695,669 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $373.1565\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 373.1552). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 74.18 ; \mathrm{H}, 5.41 ; \mathrm{N}, 7.52$. Found: C, 74.27 ; H, 5.46; N, 7.59 .

9-(Benzyloxy)-8-cyano-1-ethoxy-3-($1^{\prime}, 3^{\prime}$-pentadienyl)-7,8-dihydro$6 H$-cyclopent $[g]$ isoquinoline (17). A white suspension of trans-2butenyltriphenylphosphonium bromide ${ }^{37}$ ($470 \mathrm{mg}, 1.2$ equiv) in anhydrous THF (5 mL) under Ar at $-78^{\circ} \mathrm{C}$ was treated with a solution of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.73 \mathrm{~mL}, 1.2$ equiv). The cold bath was removed, and the resulting red suspension was allowed to stir at $25^{\circ} \mathrm{C}$ for 40 min to effect a blood-red solution. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of $15(366 \mathrm{mg}, 0.98 \mathrm{mmol})$ in anhydrous THF (5 mL) was introduced through a syringe dropwise. The resulting orange-red suspension was allowed to stir overnight (12 h) during which time the cold bath temperature warmed from -78 to $25^{\circ} \mathrm{C}$ gradually. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, acidified with the addition of dilute aqueous $\mathrm{HCl}(3.0 \mathrm{M}, 2 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography $\left(\mathrm{SiO}_{2}, 1.5 \times 30 \mathrm{~cm}, 10 \% \mathrm{EtOAc}-\right.$ hexane $)$ afforded $17(361 \mathrm{mg}, 403$ mg theoretical, 89%) as a mixture of four olefin isomers (cis-cis:cis-trans:trans-cis:trans-trans $=1: 5.5: 1.6: 5.4$), which were isomerized to a trans-trans:cis-trans mixture of isomers ($85: 15$) by treatment of a solution of the isomeric mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CHCl}_{3}(0.1 \mathrm{M})$ with I_{2} (0.05 equiv) at $25^{\circ} \mathrm{C}$ for $4-5$ days. The isomerization reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ and washed with aqueous 0.25 M
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(80 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}), concentrated in vacuo, azeotropically dried with toluene (2×5 mL), and carried directly into the following reaction. For 17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.50-7.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}=\mathrm{CH}), 7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{d}, J=$ $15.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.29\left(1 \mathrm{H}, \mathrm{t}, J=11.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.97$ $\left(1 \mathrm{H}, \mathrm{dq}, J=15.0,6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.25(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}$, $\mathrm{PhCHH}), 5.12(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH} H), 4.64(2 \mathrm{H}, \mathrm{dq}, J=14.1$, $\left.7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.81(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, \mathrm{CHCN}), 3.24(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 7-\mathrm{HH}), 3.02(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H} H), 2.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}_{2}\right), 1.85(3 \mathrm{H}, \mathrm{d}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.40\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.9$ (e), 152.5 (e), 147.3 (e), 146.9 (e), 143.1 (e), 137.4 (e), $132.6(\mathrm{o}, \mathrm{CH}), 132.3(\mathrm{o}, \mathrm{CH}), 131.6(\mathrm{o}, \mathrm{CH}), 129.1$ (e), $128.8(\mathrm{o}, \mathrm{CH}), 128.4(\mathrm{o}$, two CH$), 128.0(\mathrm{o}$, three CH$), 120.8(\mathrm{e})$, 118.3 (o), 113.2 (o), $76.9\left(\mathrm{e}, \mathrm{PhCH}_{2}\right), 62.1\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.7\left(\mathrm{e}, \mathrm{CH}_{2}-\right.$ CH_{2}), $31.6(\mathrm{o}, \mathrm{CHCN}), 31.3\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.6\left(\mathrm{o}, \mathrm{CHCH}_{3}\right), 14.5(\mathrm{o}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (KBr) $\nu_{\text {max }} 2972,2930,2238,1618,1571,1328,1096$, 987, 879, 734, $693 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $411.2059\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 411.2073).

9-(Benzyloxy)-1-ethoxy-3-($1^{\prime}, 3^{\prime}$-pentadienyl)-7,8-dihydro-6 H -cy-clopent[g]isoquinoline-8-carboxaldehyde (18). A solution of 17 (230 $\mathrm{mg}, 0.56 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ under Ar was treated with a solution of Dibal $-\mathrm{H}(1.0 \mathrm{M}, 1.10 \mathrm{~mL}, 2.0$ equiv). The resulting solution was allowed to stir at $-30^{\circ} \mathrm{C}$ for 1 h before 40 mL of aqueous 1.0 M phosphate buffer ($\mathrm{pH}=4.0$) was introduced, and the cold bath was removed. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 min under Ar, diluted with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$, extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure under an atmosphere of Ar. This crude material was sufficiently pure to use directly and generally was azeotropically dried with $\mathrm{C}_{6} \mathrm{H}_{6}(2 \times 2 \mathrm{~mL})$ under Ar and carried into the subsequent reaction. Chromatography under Ar $\left(\mathrm{SiO}_{2}, 1.5 \times 40 \mathrm{~cm}, 5-10 \% \mathrm{EtOAc}\right.$-hexane) of the product from the above reaction afforded $18(160 \mathrm{mg}, 232 \mathrm{mg}$ theoretical, 69%) as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.73(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.38-$ $7.32(6 \mathrm{H}, \mathrm{m}), 7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{d}, J$ $=15.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.29\left(1 \mathrm{H}, \mathrm{t}, J=14.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.96$ $\left(1 \mathrm{H}, \mathrm{dq}, J=15.0,7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.15(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}$, $\mathrm{PhCHH}), 4.97(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{PhCH} H), 4.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHH}\right)$, $4.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH} H\right), 3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 3.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHH}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH} H\right), 1.85(3 \mathrm{H}, \mathrm{d}, J=5.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.38\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 199.7$ (o, CHO), 152.5 (e), 148.9 (e), 148.1 (e), 146.8 (e), 142.8 (e), 137.3 (e), 132.3 (o), 132.0 (o), 131.6 (o), 131.5 (e), 128.4 (o, two CH), 127.9 (o, two CH), 125.1 (o), 118.5 (o), 115.7 (o), 113.4 (o). $76.7\left(e, \mathrm{PhCH}_{2}\right), 62.0\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55.7(\mathrm{o}, \mathrm{CHCHO})$, $32.0\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.9\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.6\left(\mathrm{o}, \mathrm{CHCH}_{3}\right), 14.5$ (o, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (film) $\nu_{\text {max }} 2933,2715,1723,1618,1567,1453,1414$. 1359, 1329, 1149, 1097, 990, 881, 733, $697 \mathrm{~cm}^{-1}$; FABHRMS (NBA$\mathrm{NaI}) m / e 414.2050\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3}\right.$ requires 414.2069).

9-(Benzyloxy)-1-ethoxy-3-($\mathbf{1}^{\prime}, \mathbf{3}^{\prime}$-pentadienyl)-7,8-dihydro-6 \mathbf{H}-cy-clopent[g]isoquinolin-8-one (20). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.68$ $(2 \mathrm{H}$, d. $J=7.2 \mathrm{~Hz}), 7.40-7.25(5 \mathrm{H}, \mathrm{m}), 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.42$ $\left(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}\right), 6.29(1 \mathrm{H}, \mathrm{t}, J=11.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 6.00\left(1 \mathrm{H}, \mathrm{dq}, J=14.6,6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.23$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.86\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right)$, $1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 203.3 (e, $\mathrm{C}=\mathrm{O}$), 161.4 (e), 157.3 (e), 154.7 (e), 149.3 (e), 145.8 (e), 137.4 (e), 133.9 (o), 133.2 (o), 131.5 (o), 128.7 (o), 128.4 (o, two CH), 128.2 (o, two CH), 127.8 (o), 118.8 (o), 112.6 (o), 77.4 (e, PhCH_{2}), $62.2\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.3\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.1\left(\mathrm{e}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 18.6\left(\mathrm{o}, \mathrm{CH}_{3}-\right.$ $\mathrm{CH}=\mathrm{CH}$), $14.4\left(\mathrm{o} . \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (film) $\boldsymbol{\nu}_{\max } 3030,2927,1708,1609$, $1560,1497,1481,1376,1358,1331,1108,1065,990,698 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $400.1901\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{3}\right.$ requires 400.1913).

9-Hydroxy-3-($\mathbf{1}^{\prime}, 3^{\prime}$-pentadienyl)-2,6,7,8-tetrahydro-1 H -cyclopent-[g]isoquinolin-1,8-dione (21). A solution of $20(8.6 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{OH}$ $(4 \mathrm{~mL})$ was treated with $\mathrm{NaBr}(135 \mathrm{mg})$ and $\mathrm{TsOH}(61 \mathrm{mg})$ at $25^{\circ} \mathrm{C}$. The resulting reaction mixture was allowed to stir at reflux under Ar for 6.5 h before it was cooled to $25^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chro-
matography $\left(\mathrm{SiO}_{2}, 0.5 \times 5 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}-\mathrm{HOAc}=10: 10: 1\right)$ afforded 21 ($5.0 \mathrm{mg}, 6.2 \mathrm{mg}$ theoretical, 81%) as a light yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 13.55(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.15(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $6.88(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}) 6.85\left(1 \mathrm{H}, \mathrm{dd}, J=16.2,11.3 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\right.$ $\mathrm{CH}=\mathrm{CH}), 6.42(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.26-6.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 6.12$ $(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.15-6.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right)$, 3.15-3.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.74-2.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.86(3 \mathrm{H}$, d, $J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$); FABHRMS (NBA-CsI) m/e 414.0106 ($\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires 414.0106).

1,4-Bis[[(1,1-dimethylethyl)dimethylsilyl]methyl]-1-[1'-ethoxy-3'($1^{\prime \prime}, 3^{\prime \prime}$-pentadienyl)-9'-(phenylmethoxy)-6', 7^{\prime}-dihydro- $8^{\prime} H$-cyclopent-[g]isoquinolinyl]-2-butyne (34). A solution of 3-((tert-butyldimethyl)silyl)oxypropyne ${ }^{45}$ ($55 \mathrm{mg}, 1.6$ equiv) in THF (1 mL) under Ar was treated with $n-\mathrm{BuLi}(1.6 \mathrm{M}, 0.20 \mathrm{~mL}, 0.32 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and recooled to -78 ${ }^{\circ} \mathrm{C}$, and $18(85 \mathrm{mg}, 0.21 \mathrm{mmol})$ in THF (1 mL) was added. Stirring was continued for 2 h during which time the cold bath temperature gradually warmed from -78 to $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, neutralized with the addition of dilute aqueous HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give crude 33.

A solution of 33 in DMF (2.0 mL) was treated with imidazole (53 $\mathrm{mg}, 3.8$ equiv) and $\mathrm{TBDMSCl}(120 \mathrm{mg}, 3.9$ equiv). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 22 h , diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 1.5 \times 30 \mathrm{~cm} .5 \% \mathrm{EtOAc}\right.$-hexane) afforded $34(78 \mathrm{mg}, 147 \mathrm{mg}$ theoretical, 54%) as a light yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.42-7.26(6 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.45(1 \mathrm{H}$, $\mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.28\left(1 \mathrm{H}, \mathrm{t}, J=14.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right)$, $5.93\left(1 \mathrm{H}, \mathrm{dq}, J=15.0,6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.21(1 \mathrm{H}, \mathrm{d}, J=11.4$ $\mathrm{Hz}, \mathrm{PhCHH}), 5.03(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOTBDMS}), 4.87(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, $\mathrm{PhCHH}), 4.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBDMS}\right), 3.38$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{CHHCH} 2), 2.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.46$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHH}\right), 2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHH}\right), 1.84(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.34\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 0.58\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.12(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right),-0.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; IR (film) $v_{\text {max }} 2954,2928,2856,1735$, 1620. 1567, 1471, 1462, 1360, 1329, 1253. 1126, 1094, 990, 836, 777 cm^{-1}; FABHRMS (NBA-NaI) m/e $698.4050\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{42} \mathrm{H}_{59} \mathrm{NO}_{4} \mathrm{Si}_{2}\right.$ requires 698.4061).

Intermediate 33 was isolated in a separate experiment by chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$-hexane) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.39-7.25(6 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 6.45$ $(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.29\left(1 \mathrm{H}, \mathrm{t}, J=11.4 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{-}\right.$ $\mathrm{CH}=\mathrm{CH}), 5.96\left(1 \mathrm{H}, \mathrm{dq}, J=14.6,6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.27(1 \mathrm{H}, \mathrm{d}$, $J=11.3 \mathrm{~Hz}, \mathrm{PhCHH}), 4.88(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{PhCH} H), 4.84(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH}), 4.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{3}\right), 4.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{CH}_{3}\right), 4.18$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTBDMS}$), $3.42(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOH}), 3.22$ ($1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHHCH}_{2}\right), 2.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{CH}_{2}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85(3 \mathrm{H}$, $\left.\mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.37\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.82$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; IR (film) $\nu_{\max } 3441,2928,2856,1700,1621,1568,1497,1472,1456$, $1416,1361,1328,1257,1123,1094,990,836,778,732,697 \mathrm{~cm}^{-1}$; FABHRMS (NBA-NaI) m/e $584.3180\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Si}\right.$ requires 584.3196).

5,8-Bis(methoxymethoxy)-1,7-dimethoxy-2-[1-[[(1,1-dimethyleth-yl)dimethylsilyl]oxy]methyl]-3-[1-[1'-ethoxy-3'-($1^{\prime \prime}, 3^{\prime \prime}$-pentadienyl)-$9^{\prime}$-(phenylmethoxy)-6', 7^{\prime}-dihydro-8'H-cyclopent[g]isoquinolinyl]-1-[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]-4-napthalenol (36). A solution of $34(37 \mathrm{mg}, 53 \mu \mathrm{~mol}), 3^{12}(70 \mathrm{mg}, 0.15 \mathrm{mmol}, 2.9$ equiv), and $\mathrm{Ac}_{2} \mathrm{O}(8.0 \mu \mathrm{~L}, 1.5$ equiv) in heptane $(0.3 \mathrm{~mL})$ was warmed at 50 ${ }^{\circ} \mathrm{C}$ for 47 h . The cooled reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20$ mL) and filtered through Florisil ($60-100$ mesh), and the filtrate was concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 30 \times 1.0 \mathrm{~cm}, 10-\right.$ 20% EtOAc-hexane gradient elution) afforded 36 (yellow oil, 18 mg , 52 mg theoretical, 35%) as a $3: 1$ mixture of two diasteromers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.87$ and $9.13(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.40-6.85(9 \mathrm{H}, \mathrm{m})$, $6.47(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.29\left(1 \mathrm{H}, \mathrm{t}, J=11.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\right.$ $\mathrm{CH}=\mathrm{CH}), 5.93\left(1 \mathrm{H}, \mathrm{dq}, J=14.4,6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.44(1 \mathrm{H}, \mathrm{d}$, $J=5.3 \mathrm{~Hz}, \mathrm{PhCHH}), 5.09(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{PhCH} H), 5.08-4.96$ $\left(4 \mathrm{H}, \mathrm{m}\right.$, two $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.78(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, CHHOTBDMS $)$,
$4.60(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{CH} H O T B D M S), 4.48(2 \mathrm{H}, \mathrm{dq}, J=13.4$, $\left.7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.97$ and $3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.67$ and $3.62(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.57$ and $3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.53$ and $3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.40-3.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOTBDMS}\right.$ and $\left.\mathrm{C}^{\prime}-\mathrm{H}\right), 2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85\left(3 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.25$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.84$ and $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.72$ and $0.64\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12$ and $0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.01$ and $0.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.27$ and $-0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.34$ and -0.49 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; IR (film) $v_{\max } 3385,3249,2929,2854,1612,1566$, 1462, 1329, 1253, 1154, 1060, 1004, 837, $778 \mathrm{~cm}^{-1}$, FABHRMS (NBA-NaI) $m / e 996.5110\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{56} \mathrm{H}_{77} \mathrm{NO}_{11} \mathrm{Si}_{2}\right.$ requires 996.5113).

5,8-Bis(methoxymethoxy)-1,7-dimethoxy-2-[1-[[(1,1-dimethyleth-yl)dimethylsilyl]oxy]methyl]-4-(phenylmethoxy)-3-[1-[1'-ethoxy-3'($1^{\prime \prime}, 3^{\prime \prime}$-pentadienyl)- 9^{\prime}-(phenylmethoxy)- $6^{\prime}, 7^{\prime}$-dihydro- $8^{\prime} H$-cyclopent-[g]isoquinolinyl]-1-[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]naphthalene (37). A solution of $36(23 \mathrm{mg})$ in acetone $(0.3 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was treated with a finely powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg})$, $\mathrm{Bu}_{4} \mathrm{NI}(15 \mathrm{mg})$, and benzyl bromide ($80 \mu \mathrm{~L}$) sequentially. The resulting reaction mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 53 h before it was concentrated. Chromatography $\left(\mathrm{SiO}_{2}, 1 \times 17 \mathrm{~cm}, 15 \% \mathrm{EtOAc}-\right.$ hexane) afforded 37 ($13 \mathrm{mg}, 25 \mathrm{mg}$ theoretical, 52%; typically $50-$ 57%) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.25$ $(4 \mathrm{H}, \mathrm{m}), 7.09-6.85(6 \mathrm{H}, \mathrm{m}), 6.80-6.72(2 \mathrm{H}, \mathrm{m}), 6.16-6.52(1 \mathrm{H}, \mathrm{m})$, $6.45-6.36(2 \mathrm{H}, \mathrm{m}), 6.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}\right), 5.89(1 \mathrm{H}, \mathrm{dq}, J$ $\left.=14.9,6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.37(1 \mathrm{H}$, $\mathrm{d}, J=9.4 \mathrm{~Hz}), 5.17(2 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{d}, J$ $=6.7 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 4.64$ $(1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}), 4.49-4.37(1 \mathrm{H}, \mathrm{m})$, $4.36-4.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHHO}\right), 4.00-3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHHO}\right), 4.01$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.04(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.09-2.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.04$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 0.86(9 \mathrm{H}$, s, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.68\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 0.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $-0.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; IR (film) $\nu_{\max } 2929,2855,1751,1605,1586$, $1566,1497,1454,1359,1329,1306,1256,1155,1062,1012,974$, $835,775,731,696 \mathrm{~cm}^{-1}$; FABHRMS (NBA-NaI) m/e $1086.5590(\mathrm{M}$ $+\mathrm{H}^{+}, \mathrm{C}_{63} \mathrm{H}_{83} \mathrm{NO}_{11} \mathrm{Si}_{2}$ requires 1086.5583.

5,8-Bis(methoxymethoxy)-1,7-dimethoxy-2-(1-hydroxymethyl)-4-(phenylmethoxy)-3-[1-[1'-ethoxy- 3^{\prime} - $\left(1^{\prime \prime}, 3^{\prime \prime}\right.$-pentadienyl)-9'-(phenyl-methoxy)-6', 7^{\prime}-dihydro-8' H-cyclopent[g]isoquinolinyl]-1-(hydroxymethyl)naphthalene (38). A solution of $37(8.5 \mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in THF $(0.85 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ under Ar was treated with $1.0 \mathrm{M} \mathrm{Bu} \mathrm{u}_{4} \mathrm{NF}$ ($40 \mu \mathrm{~L}, 5.1$ equiv) in THF. The resulting solution was allowed to stir at $50^{\circ} \mathrm{C}$ for 10.5 h before it was concentrated under a stream of N_{2}. $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.8 \mathrm{~mL})$ were added, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(7 \times 2 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was kept in vacuo for 4 h to afford crude $38(8.9 \mathrm{mg}, 6.7 \mathrm{mg}$ theoretical) as an orange colored syrup which was sufficiently pure to be used directly for the next step after it was azeotropically dried with benzene $(2 \times 0.2 \mathrm{~mL})$. In another experiment, the residue was transferred directly onto a chromatography column $\left(\mathrm{SiO}_{2}, 1 \times 12 \mathrm{~cm}, 60 \%\right.$ EtOAc-hexane) without aqueous workup to provide pure 38 as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-6.90(14 \mathrm{H}, \mathrm{m})$, $6.42(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right)$, $5.90\left(1 \mathrm{H}, \mathrm{dq}, J=15.0,6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.33(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.3$ $\mathrm{Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{d}$, $J=11.5 \mathrm{~Hz}), 4.70-4.45(6 \mathrm{H}, \mathrm{m}), 4.44-4.20(5 \mathrm{H}, \mathrm{m}), 3.95(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72-3.62(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.95-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.45$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH} H\right), 1.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHH}\right), 1.82(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.00\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; IR (film) $v_{\text {max }} 3372$, 2919, 2849, 1606, 1567, 1453, 1329, 1153, 1069, 1016, 974, 734, 698 cm^{-1}; FABHRMS (NBA-NaI) m/e $858.3875\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{51} \mathrm{H}_{55} \mathrm{NO}_{11}\right.$ requires 858.3853).

5,8-Bis(methoxymethoxy)-9, 9^{\prime}-bis(phenylmethoxy)-6',7'-dihydro-4,6-dimethoxy-1'-ethoxy-3-hydroxy- 3^{\prime} - $\left(1^{\prime \prime}, 3^{\prime \prime}\right.$-pentadienyl)spiro[$2 H$ -benz[f]indene-2,8'-8'H-cyclopent[g]isoquinolin]-1(3H)-one (40). A 1 M solution of DMSO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(312 \mu \mathrm{~L}, 40$ equiv) was treated at $-78^{\circ} \mathrm{C}$ under Ar with 0.5 M solution of TFAA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(312 \mu \mathrm{~L}$, 20 equiv) and stirred for 10 min at $-78^{\circ} \mathrm{C}$. A solution of the crude
diol $38(8.9 \mathrm{mg}, \leq 7.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . A 1 M solution of DBU in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($390 \mu \mathrm{~L}$, 50 equiv) was added, and the mixture was stirred for 20 h during which time the cooling bath was warmed gradually to 25 ${ }^{\circ} \mathrm{C}$. The mixture was concentrated and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0$ mL) was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times 2 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and transferred onto a small plug of $\mathrm{SiO}_{2}(0.5 \times 4 \mathrm{~cm})$ and eluted $(20-50 \% \mathrm{EtOAc}$-hexane) to afford the crude 40 ($7.3 \mathrm{mg}, 6.6 \mathrm{mg}$ theoretical) as a yellow syrup which was sufficiently pure to be used directly for the next step after it was azeotropically dried with benzene ($2 \times 0.5 \mathrm{~mL}$). In a separate experiment, column chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times 5 \mathrm{~cm}, 0-20 \%\right.$ EtOAc-hexane) provided pure 40 as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR of the major isomer $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.58-6.75(14 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}$, d, $J=15.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.32-6.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right), 5.91$ $\left(1 \mathrm{H}, \mathrm{dq}, J=14.0,6.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right), 5.35(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}$, $\mathrm{PhCHH}), 5.21(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{PhCH} H), 5.08-5.02(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.99-4.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 4.81(1 \mathrm{H}$, $\mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{PhCHH}), 4.54(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{PhCHH}), 4.52-4.43$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65-3.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.27-$ $3.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.60-2.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHH}\right), 2.18-2.09(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHH}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right), 1.08(3 \mathrm{H}, \mathrm{t}, J$ $=7.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$); IR (film) $\nu_{\text {max }} 3454,2916,2848,1710,1600$, $1567,1463,1330,1262,1153,1099,1017,984,731 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) $m / e 986.2516\left(\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{51} \mathrm{H}_{51} \mathrm{NO}_{11}\right.$ requires 986.2516).

5,8-Bis(methoxymethoxy)-9,9'-bis(phenylmethoxy)-6', 7^{\prime}-dihydro-4,6-dimethoxy-1'-ethoxy- 3^{\prime} - $\left(1^{\prime \prime}, 3^{\prime \prime}\right.$-pentadienyl)spiro $2 \boldsymbol{H}$-benz[f]in-dene-2,8'-8'H-cyclopent[g]isoquinolin]-1,3-one (41). A 1 M solution of DMSO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(234 \mu \mathrm{~L}, 30\right.$ equiv) was treated at $-78^{\circ} \mathrm{C}$ under Ar with a 0.5 M solution of TFAA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($234 \mu \mathrm{~L}, 15$ equiv) and stirred for 10 min at $-78^{\circ} \mathrm{C}$. A solution of crude $40(7.3 \mathrm{mg}, \leq 7.8$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$ was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . A 1 M solution of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(312 \mu \mathrm{~L}, 40$ equiv) was added. After 10 min , the cooling bath was removed, and the mixture was stirred for 30 min at $25^{\circ} \mathrm{C}$ before being concentrated in a N_{2} stream. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 2 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography $\left(\mathrm{SiO}_{2}\right.$, $0.5 \times 4 \mathrm{~cm}, 20-50 \%$ EtOAc-hexane) afforded 41 ($4.5 \mathrm{mg}, 6.6 \mathrm{mg}$ theoretical, 68% from 37 , typically $57-68 \%$ overall) as a green-yellow syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.64-7.61(2 \mathrm{H}, \mathrm{m}), 7.40-7.24$ $(5 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{s}), 6.89-6.68(5 \mathrm{H}, \mathrm{m}), 6.43(1 \mathrm{H}, \mathrm{d}$, $J=14.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.90(1 \mathrm{H}, \mathrm{dq}$, $\left.J=14.9,6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 5.04-4.97(5 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{d}, J=$ $9.7 \mathrm{~Hz}, \mathrm{PhCHH}), 4.74\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.44(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.43-3.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.53(2 \mathrm{H}, \mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.82\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.06$ ($3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$); IR (film) $v_{\max } 2935,1732,1703,1598$, $1568,1455,1358,1328,1263,1153,1099,1019,971,736,699 \mathrm{~cm}^{-1}$; UV (i-PrOH) $\lambda_{\max } 370$ (14400), 354 (16700), 327 (25 300), 315 (26 200), 292 (43950) nm; CD (Figure 1); FABHRMS (NBA-CsI) m / e $984.2318\left(\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{51} \mathrm{H}_{49} \mathrm{NO}_{11}\right.$ requires 984.2360).

Preparative Resolution of 41. A solution of racemic 41 in i - PrOH hexane ($2: 1$) was subjected to chromatography on a semipreparative HPLC CHIRACEL OD column ($2 \mathrm{~cm} \times 25 \mathrm{~cm}, 20 \% i$ - $\mathrm{PrOH}-$ hexane, $2 \mathrm{~mL} / \mathrm{min},(10 \mathrm{~min}), 5 \mathrm{~mL} / \mathrm{min}(10 \mathrm{~min}), 6 \mathrm{~mL} / \mathrm{min}(40 \mathrm{~min})$ flow
rate). The effluent was monitored at 280 nm , and the enantiomers eluted with retention time of 41.8 min (natural 41) and 47.6 min (ent41), respectively ($\alpha=1.14$). The fractions were assayed by injection onto an analytical CHIRACEL OD HPLC column $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, $10 \% i-\mathrm{PrOH}-$ hexane, $0.9 \mathrm{~mL} / \mathrm{min}$ flow rate, $\alpha=1.38$). The retention times on the analytical column were 11.2 min (natural 41) and 15.1 $\min (e n t-41)$, respectively. Appropriate fractions were combined and concentrated to afford each enantiomer ($>99 \%$ ee). The circular dichroism spectra of the enantiomers 41 show the highest molar ellipticity at 303 nm with a $[\Theta]$ value of $+7.1 \times 10^{4} \mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{dmol}^{-1}$ for the natural enantiomer $41\left(t_{\mathrm{R}}=11.2 \mathrm{~min}\right.$, analytical column) and at 303 nm with a $[\Theta]$ value of $-7.1 \times 10^{4} \mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{dmol}^{-1}$ for the unnatural enantiomer ($t_{\mathrm{R}}=15.1 \mathrm{~min}$, analytical column).

Natural and ent-Fredericamycin \mathbf{A} (1). A solution of 41 (0.6 mg , $0.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was treated at $-78^{\circ} \mathrm{C}$ under Ar with a 1.0 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mu \mathrm{~L}, 57$ equiv) which resulted in a deep red colored solution. The mixture was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$ before it was treated with aqueous $1.5 \mathrm{M} \mathrm{HCl}(0.6 \mathrm{~mL})$ and stirred for additional 3 h at $25^{\circ} \mathrm{C}$ open to air. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1,4 \times 2 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred onto a small plug of $\mathrm{SiO}_{2}(0.5 \times 5 \mathrm{~cm})$ and eluted with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}(87: 3: 3$) to afford a mixture of 1 and $1-\mathrm{OEt}(0.5 \mathrm{mg})$. The residue $(0.5 \mathrm{mg})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ $(0.2 \mathrm{~mL})$ under Ar , and $\mathrm{NaBr}(7.0 \mathrm{mg}, 68 \mu \mathrm{~mol})$ and $\mathrm{TsOH}(3.0 \mathrm{mg}$, $16 \mu \mathrm{~mol}$) were introduced. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h before being treated with aqueous $1.5 \mathrm{M} \mathrm{HCl}(0.6 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1,4 \times 2 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times\right.$ $5 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}-\mathrm{HOAc} 10: 10: 1$) afforded $1(0.34 \mathrm{mg}, 0.4 \mathrm{mg}$ theoretical, 85%) which was identical with a sample of the authentic natural product: (TLC: $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}$ 87:3:3; $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc-HOAc 10:10:1). During evaporation to dryness, the chromatographed material turned blue. Before the NMR was measured the substance was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, treated with 1.5 M HCl , extracted with $\mathrm{EtO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1,4 \times 2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford the red form which was more soluble in CDCl_{3} than the blue form: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 13.19(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $12.55(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 12.24(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 8.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.88(1 \mathrm{H}, \mathrm{s})$, $6.46(1 \mathrm{H}, \mathrm{dd}, J=15.8,10.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHAr}), 6.34(1 \mathrm{H}, \mathrm{s}), 6.28(1 \mathrm{H}$, s), $6.23-6.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right), 6.08(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHAr}), 5.95\left(1 \mathrm{H}, \mathrm{dq}, J=15.0,6.0 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right), 3.93(3 \mathrm{H}$, s, OCH_{3}), $3.31\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.54(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}\right) ;$ IR (film) $\nu_{\text {max }} 2913$, $2851,1713,1605,1415,1292,1261,1195,1175,1138,1108,1060$, 1012, $884,848,816 \mathrm{~cm}^{-1}$; UV ($20 \% \mathrm{DMF}-\mathrm{CH}_{3} \mathrm{OH}+\operatorname{trace} \mathrm{Et}_{3} \mathrm{~N}$) $\lambda_{\text {max }} 635(7930), 393(24200), 374(29500), 359(23800), 332(23400)$, $318(24900), 306(23000), 260(42900) \mathrm{nm} ; C D$ (Figure 2); FABHRMS (NBA-CsI) m/e $542.1441\left(\mathrm{M}^{+}+\mathrm{H}\right.$, hydroquinone), negative ion FABMS (NBA) $m / e 538\left(\mathrm{M}^{-}-\mathrm{H}\right)$.

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (CA42056) and thank Professor Paul A. Kitos (University of Kansas) for the conduct of the cytotoxicity testing, NIH for an authentic sample of natural fredericamycin A , and M . Case for the CD measurements.

JA9527277

[^0]: ${ }^{*}$ Abstract published in Advance ACS Abstracts, November 15, 1995.
 (1) Pandey, R, C.; Toussaint, M. W.; Stroshane, R. M.; Kalita, C. C.; Aszalos, A. A.; Garretson, A. L.; Wei, T. T.; Byrne, K. M.; Geoghegan, R. F., Jr.; White, R. J. J. Antibiot. 1981, 34, 1389.
 (2) Biosynthesis: Byrne, K. M.; Hilton, B. D.; White, R. J.; Misra, R.; Pandey, R. C. Biochemistry 1985, 24, 478.
 (3) Misra, R.; Pandey, R. C.; Silverton, J. V. J. Am. Chem. Soc. 1982, 104, 4478.
 (4) Misra, R.; Pandey, R. C.; Hilton, B. D.; Roller, P. P.; Silverton, J. V. J. Antibiot. 1987, $40,786$.
 (5) Warnick-Pickle, D. J.; Byrne, K. M.; Pandey, R. C.; White, R. J. J. Antibiot. 1981, 34, 1402.
 (6) Hilton, B. D.; Misra, R.; Zweier, J. L. Biochemistry 1986, 25, 5533.
 (7) Dalal, N. S.; Shi, X. Biochemistry 1989, 28, 748.
 (8) Latham, M. D.; King, C. K.; Gorycki, P.; Macdonald, T. L.; Ross, W. E. Cancer Chemother. Pharmacol. 1989, 24, 167.
 (9) Von Hoff, D. D.; Cooper, J.; Bradley, E.; Sandbach, J.; Jones, D.; Makuch, R. Am. J. Med. 1981, 70, 1027.
 (10) Misra, R. J. Antibiot. 1988, 4I, 976.

[^1]: (11) Yokoi, K.; Hasegawa, H.; Narita, M.; Asaoka, T.; Kukita, K.; Ishizeka, S.; Nakajima, T. Jpn Patent 152468, 1985; Chem. Abstr. 1986, 104, 33948j.
 (12) Boger, D. L.; Jacobson, I. C. J. Org. Chem. 1991, 56, 2115.
 (13) Boger, D. L.; Jacobson, I. C. J. Org. Chem. 1990, 55, 1919.
 (14) Boger, D. L.; Jacobson, I. C. Tetrahedron Lett. 1989, 30, 2037.
 (15) Boger, D. L.; Zhang, M. J. Org. Chem. 1992, 57, 3974.
 (16) Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J. Am. Chem. Soc. 1988, I10, 6461. Kelly, T. R.; Ohashi, N.; ArmstrongChong, R. J.; Bell, S. H. J. Am. Chem. Soc. 1986, 108, 7100.
 (17) Clive, D. L. J.; Tao, Y.; Khodabocus, A.; Wu, Y.-J.; Angoh, A. G.; Bennett, S. M.; Boddy, C. N.; Bordeleau, L.; Kellner, D.; Kleiner, G.; Middleton, D. S.; Nichols, C. J.; Richardson, S. R.; Vernon, P. G. J. Am. Chem. Soc. 1994, 116, 11275. Clive, D. L. J.; Tao, Y.; Khodabocus, A.; Wu, Y.-J.; Angoh, A. G.; Bennett, S. M.; Boddy, C. N.; Bordeleau, L.; Kellner, D.; Kleiner, G.; Middleton, D. S.; Nichols, C. J.; Richardson, S. R.; Vernon, P. G. J. Chem. Soc., Chem. Commun. 1992, 1489.
 (18) Saint-Jalmes, L.; Lila, C.; Xu, J. Z.; Moreau, L.; Pfeiffer, B.; Eck, G.; Pelsez, L.; Rolando, C.; Julia, M. Bull. Soc. Chim. Fr. 1993, 130, 447.
 (19) Rama Rao, A. V.; Singh, A. K.; Rao, B. V.; Reddy, K. M. Heterocycles 1994, 37, 1893. Rama Rao, A. V.; Singh, A. K.; Rao, B. V.; Reddy, K. M. Tetrahedron Lett. 1993, 34, 2665.
 (20) Wendt, J. A.; Gauvreau, P. J.; Bach, R. D. J. Am. Chem. Soc. 1994, 116. 9921.

[^2]: (30) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J. Am. Chem. Soc. 1991, 113, 1713. Boger, D. L.; Nakahara, S. J. Org. Chem. 1991, 56, 880. Boger, D. L.; Curran, T. T. J. Org. Chem. 1990, 55, 5439. Boger, D. L.; Corbett, W. L.; Wiggins, J. M. J. Org. Chem. 1990, 55, 2999. Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517. Boger, D. L.; Cassidy, K. C.; Nakahara, S. J. Am. Chem. Soc. 1993, 115, 10733.
 (31) For the diene tautomer: $7.25(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.95(1 \mathrm{H}$, ddd, J $=17,10,8 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.70(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{d}, J$ $=10 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 2.99(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.

[^3]: (32) The diene 3 was prepared in six steps (typically $80 \%, 63-86 \%$ overall) from ethyl bromopyruvate as described ${ }^{30}$ with the exception that EtOH was substituted for $\mathrm{CH}_{3} \mathrm{OH}$ in the initial step of oxime formation which avoided an occasional generation of a trace amount of the corresponding methyl ester, and the final THP deprotection step was conducted with Amberlyst-15 (EtOH, $50{ }^{\circ} \mathrm{C}, 19 \mathrm{~h}, 100 \%$).

[^4]: (36) Mancuso, A. J.; Swern, D. Synthesis 1981, 165.

[^5]: (38) For 9-(benzyloxy)-8-cyano-1-ethoxy-3-((tert-butyldimethylsilyloxy)-methyl)-7,8-dihydro- 6 H -cyclopent[g]isoquinoline (22): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.49-7.46(2 \mathrm{H}, \mathrm{m}), 7.40-7.32(4 \mathrm{H}, \mathrm{m}), 5.24(1 \mathrm{H}, \mathrm{d}, J=$ $11.2 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 5.11(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph}), 4.77(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHHOSi}), 4.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{OOSi}), 4.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.82(1 \mathrm{H}, \mathrm{dd}$, $J=4.1,8.4 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}), 3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 2.44-$ $2.24(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 1.34\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.98(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.1$, $152.5,152.4,146.7,143.1,137.4,129.5,128.4$ (two CH), 128.0 (two CH), $120.8,110.4,109.8,76.9,65.7,62.1,31.70,31.67,31.4,26.0,14.5,-5.2$. For 9-(benzyloxy)-1-ethoxy-3((tert-butyldimethylsilyloxy)methyl)-7,8-di-hydro-6 H -cyclopent $[g]$ isoquinoline-8-carboxaldehyde (23): ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3$, $400 \mathrm{MHz}) \delta 9.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.5-7.3(7 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}, \mathrm{d}, J=11.4$ $\mathrm{Hz}, \mathrm{C} H \mathrm{HPh}), 4.96(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph}), 4.77(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{HOSi})$, $4.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CHHOSi}), 4.56\left(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, \mathrm{CH}^{2} \mathrm{CH}_{3}\right), 4.46$ $\left(1 \mathrm{H}, \mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, \mathrm{OCHHCH}_{3}\right), 3.79(\mathrm{lH}$, ddd, $J=8.2,5.3,2.7$ $\mathrm{Hz}, \mathrm{C} 8-\mathrm{H}), 3.01(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H})$, $1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.14(6 \mathrm{H}, \mathrm{s}$, SiCH_{3}).

[^6]: (44) For 30: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.69(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.09$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H}), 7.46(5 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}$, $\mathrm{PhCHH}), 4.97(\mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, \mathrm{PhCH} H), 4.46(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right)$, $3.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 2.52\left(1 \mathrm{H}, \mathrm{dt}, J=13.7,8.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHH}\right)$, $2.14\left(1 \mathrm{H}\right.$, ddd, $\left.J=13.7,7.9,2.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH} H\right), 1.45(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; FABMS (NBA-CsI) $m / e 442\left(\mathrm{M}+\mathrm{H}^{+}\right)$and $554(\mathrm{M}+$ Cs^{+}).
 (45) Logue, M. W.; Teng, K. J. Org. Chem. 1982, 47, 2549.

[^7]: (46) Imamoto, T. Pure Appl. Chem. 1990, 62, 747.

[^8]: (48) For representative examples, see: Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 3642.
 (49) The agent exhibits a pH dependent CD and the addition of TFA (acid) led to a decrease in the $[\Theta]^{25}{ }_{396}$. This accounts for the small discrepancy in the molar ellipticities for the two enantiomers as shown in Figure 2. Both enantiomers were $>99 \%$ ee (HPLC analysis on ChiralCel OD column).

